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STABILITY OF A DUSTY NONISOTHERMAL GAS JET 

E. P. Kurochkina and M. P. Strongin UDC 532.517.6.013.4 

Interest in modeling the behavior of gas-dispersed flows with large parameter gradients 
has increased greatly in recent years for several reasons. On the one hand, there are an 
increasing number of practical uses for such flows. Examples of this are found in the chemical 
industry and in the area of environmental protection (propagation of aerosols). On the other 
hand, the interest also stems from improved possibilities for calculating such flows. In 
this regard, investigators are especially attracted to the problem of the stability of gas- 
dispersed flows. The solution of this problem:would in several cases make it possible to 
obtain estimates of the critical parameters corresponding to the transition from laminar 
to turbulent flow. Calculations of stability performed in [i~3] for:dusty:isothermal gas 
flows showed that a flow may be appreciably stabilized by particles (the critical Reynolds 
numbers may increase by several orders of magnitude under certain conditions). No calculas 
have been made of the stability of thermally stratified gas flows with a disperse phase, 
although such calculations would most likely have practical value. Here, we examine the 
stability of a dusty plane jet with. a temperature differing considerably from the medium 
in which the jet is flowing. 

The flow of a submerged viscous nonisothermal gas-dispersed jet is described by the 
system of Navier-Stokes equations with allowance for the gas-particle interaction, which 
is modeled by a term of the Stokes force type. As was noted in [1-3], an important parameter 
is ~ = T/c 0 , where ~ = L/(Um~C ) (L and U m are the characteristic scales of length and veloc- 
ity of the jet, while ~ and C are the wave number and the phase velocity o~ the perturbations). 
The quantity ~0 = P0 d2(18Dg) is the time of Stokes relaxation relative to the particle ve- 
locity (P0 is the density of the particle material, d is the particle diameter, and D- is 
the viscosity of the gas). The case ~ << i is usually realized in actual dusty flows. ~ The 
following evaluations can serve as an illustration. For particles of the diameter 10 -4 m 
and density p = 104 kg/m 3 with a hot-air viscosity ~g = 2"10 -2 kg/(m.sec), the relaxation 
time is ~0 = 5/18 sec. At the same time, for typical jet scales L = 10 -2 m, U m = 2.102 m/,~ �9 
sec, and ~C = 10 -2 (from the results of our study), ~ z 5-10 -3 sec and ~ = 18"10 -3 . Thus, 
the charcteristic fluctuation velocities of the partlcies are considerably less than the 
fluctuation velocity of the gas. As a result, in the analysis of stability presented, here, 
the disturbance of the particles can be ignored. Since the parameter ~i = 18pgL2/(p0 He d ~) 
depends on the Reynolds number Re = LUm/~g (v~ ~ 9g/Ng, 9g is the density of the gas), it 
is convenient to use it as an independent varible (in [2-4], ~ was assigned; this led to 
obvious problems in calculating neutral curves with ~i<<I) . As the characteristic param- 
eter in the present study, we take A = 18~(L/d) = (6 is the volumetric concentration of part- 
icles). For the above parameters, 18(L/d) = 1.8-102 and with a change in ~ from 10-2to 10 -2 , 
A may incrase from 1.8 to 1.8.103. 

Proceeding on the basis of the Navier-Stokes equations for a nonisothermal flow and 
using Stokes' law to describe the effect of the particles on the gas flow, we can obtain 
the following system of equations: 

e v  op 2 0 / ou~ l 0 ou ov 2 0 [ ~ ( o v  + + ( U - - U o ) ,  
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dV aP 2 0 ( a V  I t 0 [ (aU aV)] 2 a [ [ a U +  aVe] An~ ,~. Vo), 
0 7 7  = @ + ~ 7 " j a - 7  ~ j + ~ - - = 7 7  ~ 7 ~ + - a ~  3 n ~ _ @  Ft-D-7 -DT]J+R-7-J_ t v -  

#p a(pu) o (pv) = O. 
o--7 + ~ + a g  ~ 

Here and below, U, V, and x, y are the longitudinal and transverse velocities and the coordin- 
ates; P is pressure; n is the distribution of particle concentration; p = pg/pg_; ~ = ~g/Fg_; 
Re_=LUm/vg_; the plus subscript corresponds to values of the parameters on the jet axis, 
while the minus subscript corresponds to values at infinity with respect to the y coordinate. 
A subscript of zero denotes particle velocity. We will study the stationary solutions of 
this system in a plane-parallel approximation. The fields of velocity, temperature, and 
concentration are assumed to be given and are independent of y. For the velocity field, 
we take step functions, corresponding to the initial section of the jet, and we use rela- 
tions of the similarity type: 

Ut = 1, t g l <  t;  Ua = 0, lyl ~ 1; (1)  

U1 = {1 + th[(l  - -  lyl)lo]}/2, o << t, - ~  < y < + ~ ;  (2)  
UI = i -- th~y, --~ < y < @~, (3) 

while T(y) = sU1(y) + i, n(y) = -Ul(y). The parameter s varies from 0 to -0.9 (cold flow) 
and from 0 to i0 (hot). The flow is isothermal at s = 0. It is assumed that density is 
inversely proportional to temperature, while the relation p = CT is used for viscosity. 
We will ignore fluctuations of temperature and particle concentration. 

Using the small perturbation method [5], we obtain the system of equations 

ia Re_ 9 (U1 - -  C) u + p Re_U~v = --  i a Re_p - -  4a2~u/3 --  2ia~v'/3 + i~ (pv)' + (~u')' + An~u; (4 )  

iaRe_p(U1 -- C)v = - -Re_p '  - -  a2~v -- 2ia(~u)'/3 + ia~u' + 4(Fv') '/3 + An~v~ (5 )  

i~pu + (pv)' = 0, ( 6 )  

where  u ( y ) ,  v ( y ) ,  p ( y )  a r e  t h e  a m p l i t u d e s  o f  t h e  v e l o c i t y  and p r e s s u r e  p e r t u r b a t i o n s .  We 
will examine solutions which are symmetrical on the axis and which decay at infinity. The 
mathematical formulation of these conditions is presented below. The critical Reynolds 
number Re... is found as the minimum Re+ = Re_ riD• for neutral perturbations. Due to the sym- 
metry of The problem:, we can restrict ourselves to positive y. The stability of a one- 
phase isothermal flow was studied in [6] for (i), while the stability of a two-phase flow 
was examined for (2), (3), in [i, 7, 8]. 

For the profile (i), system (4)-(6) has piecewise-constant coefficients. The region 
over the y values can be subdivided into two subregions (0 ~ y < 1 and 1 < y < + ~), and 
we can write an analytical solution in each of these subregions. The fact that the functions 
Uz, p, and ~ have discontinuities makes it difficult to analyze system (4)-(6). Thus, in 
accordance with the laws of mass and momentum conservation, we first introduce the new vari- 
ables ~ = pu (used in (6)), q = 4~v'/3 - 2ia~u/3 - Re_p (from Eq. (5)), and w ~ Re_U1q~ '! 
~ia~v/3-- Fu'. We determine wbymeans of (4) and the relation Dv' = 2(Dv)'/3 - i~Du/3, 
which follows from the temperature dependences of density and viscosity adopted above. 
The new variables are also continuous for the discontinuous profiles of U I and T. 

In the new variables, system (4)-(6) has the following form (the variable u remains 
the same): 

~' = [Re_U~/p+ ,-V ia/ (3p) ]~p - -  tv/F, 
q' = [ 4 a ~ / ( 3 0 )  - -  i a B e _ C  - -  Ang/p]q~ 4- iezw, 

(p ' = --io~pu, 

w' = [ictRe_p(C -- 2U0 -- 8a'2~x/3 -~-An~t]u -F iaq. 

(7) 

We seek a solution which decays at infinity and which is symmetrical at zero with respect to the 
functions ~ and w: 

u+ = c~ sh (ay) + c2 sh (• 
q+ = -- i(a + • 1 sh (ay) - -  2ia~+c~ sh (• 

% = --ip+cl chi(ay) -- iap+c2 ch (xy)/• 
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iv+ = --(;Re_p§ ? 2a9+/3)c~ ch (ag) -t- (0:~,Lt+/3 - -  • _ i0: Re_ p+)c2 ch (•215 

( w h e r e  0 ~< g < l ,  • = a2 ~ /aRe_ (1 - -  C)p+/F+ - - A ) ,  u_ = c3exp(--r -F c4 exp (- -?y) ,  q_ = --(Re_ C -~ 
2ia)c.~ exp ( - -  ag)  - -  2i0:c4 exp ( - -  ",;g), r == ic3 exp ( - - a g )  " i0:c4exp(--?y)/v, iv_ = 20:ca exo ( - a y ) / 3  . -  h, - ~'-'/ 
/(3y)]c a exp ( - ? g )  (t ~< y < + o o ,  ?z = 0:2 _ / a R e _ C )  . The c o n d i t i o n s  o f  c o n t i n u i t y  o f  u ,  q ,  and  w 
at the point y = 1 lead to the system 

F = 

F c  m ~ O~ 

( sh 0: sh • - -  exp ( - -  0:) - -  exp --(~) 

F21 F22 F~3 2i~ exp ( - -  y) | 
- -  ip+ch  0: F:~., - -  i exp ( - -  0:) - -  i0: exp ( - -  % ' y ] '  

F4, F42 - -  20: exp (--  0:),/3 F44 / 

(8) 

F2l = - - i  (0: -~ X2/0:)~+ sh 0:, F22 - -2 i  0:~+ sh • 

F23 = (Re_C -~ 2i0:) exp (--~),  F32 = --gap+ ch n /n ,  

F41 = --(2a[~+/3 -l- i re_ p+) all 0:, F42 = (~2~+/3 - -  z2~+ - -  

iaRe_p+ ) ch z/x,  

F44 = [ 0 : ~ ) ( 3 j -  ~1 exp (--~,), c,~ = (cl, c2, e3, <,)1. 

F o r  ( 8 )  t o  h a v e  a n o n t r i v i a l  s o l u t i o n ,  i t  i s  n e c e s s a r y  t o  s a t i s f y  t h e  c o n d i t i o n  

det t[ F l[ = 0. ( 9 )  

U s i n g  t h e  s o l u t i o n  ( 9 )  and  t h e  s e c a n t  m e t h o d ,  we c a n  c o n s t r u c t  a n e u t r a l  c u r v e  r e l a t i v e  
t o  Re+ and  f i n d  R e , .  

S y s t e m  ( 7 )  c a n  be  s o l v e d  o n l y  n u m e r i c a l l y  f o r  p r o f i l e s  ( 2 )  and  ( 3 ) .  The u s e  o f  s y s t e m  
( 4 ) - ( 6 )  l e a d s  t o  s e r i o u s  c o m p l i c a t i o n s  i n  t h e  n u m e r i c a l  r e a l i z a t i o n  due  t o  t h e  p r e s e n c e  o f  
c o e f f i c i e n t s  w i t h  l a r g e  g r a d i e n t s  ( s i m i l a r  t o  t h e  d e r i v a t i v e  o f  a r a p i d l y  c h a n g i n g  f u n c t i o n ) .  
To p e r f o r m  n u m e r i c a l  c a l c u l a t i o n s  i n  t h e  p r e s e n t  s t u d y ,  we w i l l  u s e  t h e  C r a n k - N i c h o l s o n  
m e t h o d  and  t h e  t e c h n i q u e  o f  c o u n t e r  t r i a l  r u n s .  S i n c e  U l ( y ) ,  T ( y ) ,  and  n ( y )  a p p r o a c h  z e r o  
a s  y ~ ~ ,  t h e  d e c a y  c o n d i t i o n s  c a n  be  r e d u c e d  t o  t h e  f o l l o w i n g :  u = [(?3 _ 0:3/3 _ 20:~/3)~ + i(2 
- -  0: )wl / (0:Re_C) ,  q = {[(0:2/3 - -  y~)(2i0: ~- Re_C) -]- 4i0:2y/31 9 - -  (~ - -  a)~w} / (0 :Re-C)  �9 T h e s e  c o n d i -  
t i o n s  c an  be  f o r m u l a t e d  a t  y = 2 f o r  ( 2 )  and  a t  y = 6 f o r  ( 3 ) .  

F i g u r e  1 ( c u r v e s  l and  2)  shows  t h e  r e s u l t s  o f  c a l c u l a t i o n s  f o r  o n e - p h a s e  t h e r m a l l y  
s t r a t i f i e d  j e t s  (A = 0 ) .  The v a l u e s  o f  Re... o f  t h e  h o t  f l o w  d e c r e a s e  ( c u r v e  1 c o r r e s p o n d s  t o  
( 1 ) ,  ( 2 ) ,  w h i l e  c u r v e  2 c o r r e s p o n d s  t o  ( 3 ) ~  and  t h e  j e t  i s  d e s t a b i l i z e d .  W i t h  e i g h t  f o l d  
o v e r h e a t i n g ,  t h e  p r o c e s s  i s  s l o w e d  f o r  ( 1 )  and  ( 2 ) ,  and  R e ,  d e p e n d s  l e s s  on t h e  amoun t  o f  o v e r -  
heating. It turns out that hot jets with similarity profile (3) are less stable and that 
destabilization is slowed with much greater overheating. In the cold jet, we find an ex- 
ponential (with respect to T_) increase in Re.~ (He. ~ T$ I for (3) and Re. ~ T$ ~ for 
(i), (2)). Meanwhile, the f~ow with profile ~3) is more stable than the flows with profiles 
(I), (2) for log T+ < 0. 

The behavior of the critical wave numbers for the nonisothermal flows is interesting 
(Fig. 2). These numbers have a maximum, the maximum being found in the overheated region 
(curve i) for profiles of the stepped type (i), (2) and in the cold region for (3) (curve 
2). The critical phase velocities C, also have a maximum (Fig. 3), but their behavior is 
more complex (curve i corresponds to (i), (2), while curve 2 corresponds to (3)). To study 
the effect of variability of the thermophysical parameters of the flows on Re,, we performed 
calculations with the constant O and D. It was found that a change in density has the great- 
est effect on Re,. This is quite natural, since it is more dependent on temperature. 

The results of studies for two-phase jets with profile (i) are shown in Fig. i (lines 
3 and 4) and Fig. 4. Since the hot jets are less stable than the isothermal or cold jets, 
we will examine hot dusty flows. At T+ = ii, we obtained a dependence of Re, on the pa- 
rameter A (curve 2 in Fig. 4) that was proportional to the volumetric concentration of parti- 
cles. For A > 30, Re, is linearly dependent on A (Re, = 0.SA + 32), but stabilization is 
much weaker than in the isothermal case (curve i). Figure i (lines 3 and 4) shows the dependence 
of Re, on T+ for different A (lines 3 and 4 correspond to A = 23 and 50). The value of Re, 
changes little, even with a sevenfold increase in temperature. The calculations performed 
for profiles (i) and (2) nearly coincide. Since we used different methods to calculate 
their stability, this served as a cross check. 
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Thus, stabilization of the flows is seen with an increase in particle concentration. 
The heating of the jet in a certain manner (curves 3 and 4 in Fig. i and curve 2 in Fig. 
4) extinguishes the stabilization effect without disturbing the linear dependence of Re, 
on A, i.e., as in the isothermal case, it was shown that the jet can be stabilized appreci- 
ably by the particles (Re, may increase by several orders of magnitude). Also, we observed 
that the high-temperature jet with the stepped profile was much more stable than the jet 
with a similarity profile. In the isothermal case, the values of Re, coincide. 
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